Share Email Print

Proceedings Paper

Method of bond strength evaluation for silicon direct wafer bonding
Author(s): Alexander Spivak; Avag Avagyan; Brady R. Davies
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

A crack-opening method used for characterization of silicon direct wafer bonding (DWB) techniques was analyzed. Mathematical model describing the influence of the pattern shape on the wafer pair resistance curve, so-called the R-curve, was developed. Two-dimensional patterns were created on a mirror-polished silicon wafer surface by a combination of photolithography, deposition and etching steps. Experimental observations did show that structured wafers can be used for large bond energy measurements. We propose utilization of structured wafers for bond energy measurements. It allows R-curve shape manipulation, increases the method sensitivity, and reduces probability of wafer failure. The resulting theory can also be used for developing new experimental methods for large bond energy measurements.

Paper Details

Date Published: 28 September 2001
PDF: 9 pages
Proc. SPIE 4557, Micromachining and Microfabrication Process Technology VII, (28 September 2001); doi: 10.1117/12.442939
Show Author Affiliations
Alexander Spivak, Kavlico Corp. (United States)
Avag Avagyan, Kavlico Corp. (United States)
Brady R. Davies, Kavlico Corp. (United States)

Published in SPIE Proceedings Vol. 4557:
Micromachining and Microfabrication Process Technology VII
Jean Michel Karam; John A. Yasaitis, Editor(s)

© SPIE. Terms of Use
Back to Top