Share Email Print
cover

Proceedings Paper

Photothermal spectroscopy as a sensitive spectroscopic tool
Author(s): Andrew C. Tam
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Photothermal spectroscopy has emerged as a popular spectroscopic technique over the past decade because it is convenient and sensitive. It is convenient since a wide range of samples of all phases from highly opaque, light- scattering or reflective to highly transparent materials can be measured to some level of accuracy over a broad spectral range with little or no sample preparation. It is sensitive since, in principle, it is a 'zero background' technique, unlike the tradition extinction technique to measure absorption. However, in practice, various sources of noises become significant when the absorption approaches the part-per-million level or below, and various considerations of noise suppression and signal enhancement are essential to exploit photothermal spectroscopy, in particular, photoacoustic spectroscopy and probe-beam deflection spectroscopy. The authors consider here the physical basis for signal generation and enhancement, as well as noise sources and reduction schemes for pulsed and continuous-modulated excitations. Examples of experimental techniques are given to illustrate the points

Paper Details

Date Published: 1 July 1991
PDF: 14 pages
Proc. SPIE 1435, Optical Methods for Ultrasensitive Detection and Analysis: Techniques and Applications, (1 July 1991); doi: 10.1117/12.44237
Show Author Affiliations
Andrew C. Tam, IBM/Almaden Research Ctr. (United States)


Published in SPIE Proceedings Vol. 1435:
Optical Methods for Ultrasensitive Detection and Analysis: Techniques and Applications
Bryan L. Fearey, Editor(s)

© SPIE. Terms of Use
Back to Top