Share Email Print

Proceedings Paper

Battlefield agent collaboration
Author(s): Peter P Budulas; Stuart H. Young; Philip J. Emmerman
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Small air and ground physical agents (robots) will be ubiquitous on the battlefield of the 21st century, principally to lower the exposure to harm of our ground forces in urban and open terrain scenarios. Teams of small collaborating physical agents conducting tasks such as Reconnaissance, Surveillance, and Target Acquisition (RSTA), intelligence, chemical and biological agent detection, logistics, decoy, sentry; and communications relay will have advanced sensors, communications, and mobility characteristics. It is anticipated that there will be many levels of individual and team collaboration between the soldier and robot, robot to robot, and robot to mother ship. This paper presents applications and infrastructure components that illustrate each of these levels. As an example, consider the application where a team of twenty small robots must rapidly explore and define a building complex. Local interactions and decisions require peer to peer collaboration. Global direction and information fusion warrant a central team control provided by a mother ship. The mother ship must effectively deliver/retrieve, service, and control these robots as well as fuse the information gathered by these highly mobile robot teams. Any level of collaboration requires robust communications, specifically a mobile ad hoc network. The application of fixed ground sensors and mobile robots is also included in this paper. This paper discusses on going research at the U.S. Army Research Laboratory that supports the development of multi-robot collaboration. This research includes battlefield visualization, intelligent software agents, adaptive communications, sensor and information fusion, and multi-modal human computer interaction.

Paper Details

Date Published: 20 September 2001
PDF: 11 pages
Proc. SPIE 4364, Unmanned Ground Vehicle Technology III, (20 September 2001); doi: 10.1117/12.439968
Show Author Affiliations
Peter P Budulas, Army Research Lab. (United States)
Stuart H. Young, Army Research Lab. (United States)
Philip J. Emmerman, Army Research Lab. (United States)

Published in SPIE Proceedings Vol. 4364:
Unmanned Ground Vehicle Technology III
Grant R. Gerhart; Chuck M. Shoemaker, Editor(s)

© SPIE. Terms of Use
Back to Top