Share Email Print

Proceedings Paper

Transparent resins for 157-nm lithography
Author(s): Ralph R. Dammel; Raj Sakamuri; Andrew R. Romano; Richard Vicari; Cheryl Hacker; Will Conley; Daniel A. Miller
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The development of sufficiently transparent resin systems is one of the key elements required for a successful and timely introduction for 157 nm lithography. This paper reports on the Simple Transmission Understanding and Prediction by Incremental Dilution (STUPID) model, a quick back-of-the-envelope increment scheme to estimate the absorption of polymers at 157 nm. A number of promising candidate resins based on norbornenes are discussed, and results with a first 157 nm resin system developed at the University of Austin are presented. The new system is based on copolymers of norbornene-5-methylenehexafluoroisopropanol (NMHFA) and t-butyl norbornene carboxylate (BNC), formulated with an acetal additive obtained by copolymerization of t-butyl norbornene-5-trifluoromethyl-5-carboxylate (BNTC) with carbon monoxide. Lithographic performance of this system extends to 110 nm dense features using standard illumination and a binary mask, or 80 nm semi-dense and 60 nm isolated features with a strong phase shift mask. The dry etch resistance of this resist is found to be slightly lower than APEX-E DUV resist for polysilicon but superior to it for oxide etches.

Paper Details

Date Published: 24 August 2001
PDF: 11 pages
Proc. SPIE 4345, Advances in Resist Technology and Processing XVIII, (24 August 2001); doi: 10.1117/12.436865
Show Author Affiliations
Ralph R. Dammel, Clariant Corp. (United States)
Raj Sakamuri, Clariant Corp. (United States)
Andrew R. Romano, Clariant Corp. (United States)
Richard Vicari, BF Goodrich (United States)
Cheryl Hacker, BF Goodrich (United States)
Will Conley, International SEMATECH (United States)
Daniel A. Miller, International SEMATECH (United States)

Published in SPIE Proceedings Vol. 4345:
Advances in Resist Technology and Processing XVIII
Francis M. Houlihan, Editor(s)

© SPIE. Terms of Use
Back to Top