Share Email Print
cover

Proceedings Paper

Quantitative description of phenolic polymer dissolution using the concept of gel layer
Author(s): Se-Jin Choi; Joon Yeon Cho
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

New model using the concept of gel layer was recently presented that aimed to provide a theoretical interpretation for experimental data of dissolution behavior to control the lithographic performance of the photoresist. The dependence of the dissolution rate of phenolic polymer on the aqueous base concentration and molecular weight of resin can be analytically described by mathematical modeling considering the formation of gel layer, which is formed by the entry of aqueous base and deprotonation of some of the phenol group. The new polymer dissolution model is based on the suggested mechanism that the diffusion of base and deprotonation reaction of the phenolic group of polymer take place simultaneously through a gel layer. The fundamental equation, which is derived form the concept of gel layer, correctly fits experimental data for aqueous base concentration and molecular weight dependence of dissolution rate of phenolic polymer. In addition, the model can predict the experimentally critical minimum base concentration below which dissolution is no longer observed. As a result, the mathematical expression by this approach offers a fully quantitative and analytical understanding of the dissolution rate.

Paper Details

Date Published: 24 August 2001
PDF: 11 pages
Proc. SPIE 4345, Advances in Resist Technology and Processing XVIII, (24 August 2001); doi: 10.1117/12.436820
Show Author Affiliations
Se-Jin Choi, DongJin Semichem Co., Ltd. (South Korea)
Joon Yeon Cho, DongJin Semichem Co., Ltd. (South Korea)


Published in SPIE Proceedings Vol. 4345:
Advances in Resist Technology and Processing XVIII
Francis M. Houlihan, Editor(s)

© SPIE. Terms of Use
Back to Top