Share Email Print

Proceedings Paper

Comparative study of 2-DOF micromirrors for precision light manipulation
Author(s): Johanna I Young; Andrei M. Shkel
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Many industry experts predict that the future of fiber optic telecommunications depends on the development of all-optical components for switching of photonic signals from fiber to fiber throughout the networks. MEMS is a promising technology for providing all-optical switching at high speeds with significant cost reductions. This paper reports on the the analysis of two designs for 2-DOF electrostatically actuated MEMS micromirrors for precision controllable large optical switching arrays. The behavior of the micromirror designs is predicted by coupled-field electrostatic and modal analysis using a finite element analysis (FEA) multi-physics modeling software. The analysis indicates that the commonly used gimbal type mirror design experiences electrostatic interference and would therefore be difficult to precisely control for 2-DOF motion. We propose a new design approach which preserves 2-DOF actuation while minimizing electrostatic interference between the drive electrodes and the mirror. Instead of using two torsional axes, we use one actuator which combines torsional and flexural DOFs. A comparative analysis of the conventional gimbal design and the one proposed in this paper is performed.

Paper Details

Date Published: 16 August 2001
PDF: 8 pages
Proc. SPIE 4334, Smart Structures and Materials 2001: Smart Electronics and MEMS, (16 August 2001); doi: 10.1117/12.436617
Show Author Affiliations
Johanna I Young, Univ. of California/Irvine (United States)
Andrei M. Shkel, Univ. of California/Irvine (United States)

Published in SPIE Proceedings Vol. 4334:
Smart Structures and Materials 2001: Smart Electronics and MEMS
Vijay K. Varadan, Editor(s)

© SPIE. Terms of Use
Back to Top