Share Email Print

Proceedings Paper

MEMS high-speed angular-position sensing system with rf wireless transmission
Author(s): Winston Sun; Wen Jung Li
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

A novel surface-micromachined non-contact high-speed angular-position sensor with total surface area under 4mm2 was developed using the Multi-User MEMS Processes (MUMPs) and integrated with a commercial RF transmitter at 433MHz carrier frequency for wireless signal detection. Currently, a 2.3 MHz internal clock of our data acquisition system and a sensor design with a 13mg seismic mass is sufficient to provide visual observation of a clear sinusoidal response wirelessly generated by the piezoresistive angular-position sensing system within speed range of 180 rpm to around 1000 rpm. Experimental results showed that the oscillation frequency and amplitude are related to the input angular frequency of the rotation disk and the tilt angle of the rotation axis, respectively. These important results could provide groundwork for MEMS researchers to estimate how gravity influences structural properties of MEMS devices under different circumstances.

Paper Details

Date Published: 16 August 2001
PDF: 8 pages
Proc. SPIE 4334, Smart Structures and Materials 2001: Smart Electronics and MEMS, (16 August 2001); doi: 10.1117/12.436607
Show Author Affiliations
Winston Sun, Chinese Univ. of Hong Kong (Hong Kong)
Wen Jung Li, Chinese Univ. of Hong Kong (Hong Kong)

Published in SPIE Proceedings Vol. 4334:
Smart Structures and Materials 2001: Smart Electronics and MEMS
Vijay K. Varadan, Editor(s)

© SPIE. Terms of Use
Back to Top