Share Email Print
cover

Proceedings Paper

Point-actuated aperture antenna development
Author(s): Marc Angelino; Gregory N. Washington
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Consistent changes in both commercial and military satellite needs have created the need for antennas with additional flexibility. Military surveillance may require the ability to focus the radiation pattern to increase the bandwidth or resolution in a certain area. Commercial satellites may need to change coverage area to meet evolving consumer needs or to compensate for adverse weather or atmospheric conditions. Recent studies on active antennas have shown that the far field radiation pattern can be changed by altering the shape of the sub reflector. In this research, we control the antenna far field radiation pattern by controlling the shape of the sub reflector using numerous point actuators placed perpendicular to the reflector surface. The PZT stack coupled with a stick-slip mechanism give the point actuators used in this design an advantage over similar studies using PZT bimorph or PVDF actuators to generate the actuation force in that the displacement can be maintained without the continuous application of voltage. An electromechanical model is used to describe the motion of the stack, and the stick slip mechanism is modeled similar to power screw-type actuators. A combined finite element/electromagnetic analysis code is used to determine the desired shape of the reflector, and the corresponding actuator displacements. The final shape of the reflector is verified using stereo photogrammetry.

Paper Details

Date Published: 16 August 2001
PDF: 9 pages
Proc. SPIE 4334, Smart Structures and Materials 2001: Smart Electronics and MEMS, (16 August 2001); doi: 10.1117/12.436594
Show Author Affiliations
Marc Angelino, The Ohio State Univ. (United States)
Gregory N. Washington, The Ohio State Univ. (United States)


Published in SPIE Proceedings Vol. 4334:
Smart Structures and Materials 2001: Smart Electronics and MEMS
Vijay K. Varadan, Editor(s)

© SPIE. Terms of Use
Back to Top