Share Email Print
cover

Proceedings Paper

Power characterization of THUNDER actuators as underwater propulsors
Author(s): Christopher Niezrecki; Sivakumar Balakrishnan
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Piezoelectric actuators have been used for active vibration control, noise suppression, health monitoring, etc. The large appeal in using smart material actuators stems from their high mechanical energy density. A relatively new actuator (THUNDER) has overcome the displacement hurdles that have plagued traditional piezoelectric based actuators. It is capable of providing a displacement on order of 0.5 cm. This allows the actuator to be used in some underwater applications, such as propulsion. To date the electrical power consumption and electromechanical efficiency of these actuators has not been quantified; specifically, applied as underwater propulsors. Some of the challenges in obtaining this information stems from the actuator's non traditional actuating architecture, high voltage requirements, and its electrical non-linearity. The work presented experimentally determines the electrical power consumption and mechanical displacement of THUNDER actuators used as underwater propulsors. It is found that the electrical power consumption of the clamshell actuator investigated is significantly less than that consumed by other autonomous under water vehicles. The potential thrust generated by such a device remains to be quantified.

Paper Details

Date Published: 16 August 2001
PDF: 11 pages
Proc. SPIE 4327, Smart Structures and Materials 2001: Smart Structures and Integrated Systems, (16 August 2001); doi: 10.1117/12.436520
Show Author Affiliations
Christopher Niezrecki, Univ. of Florida (United States)
Sivakumar Balakrishnan, Univ. of Florida (United States)


Published in SPIE Proceedings Vol. 4327:
Smart Structures and Materials 2001: Smart Structures and Integrated Systems
L. Porter Davis, Editor(s)

© SPIE. Terms of Use
Back to Top