Share Email Print

Proceedings Paper

Finite element modeling of MFC/AFC actuators
Author(s): M. Salim Azzouz; Jeffrey S. Bevan; Jeng-Jong Ro; Chuh Mei
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

The anisoparametric three-node MIN6 shallow shell element is extended for modeling Macro-fiber Composite/Active Fiber Composites (MFC/AFC) actuators for active vibration and acoustic control of curved and flat panels. The recently developed MFC/AFC actuators exhibit enhanced performance, they are anisotropic and highly conformable as compared to traditional monolithic isotropic piezoceramic actuators. The extended MIN6 shell element formulation includes embedded or surface bonded MFC/AFC laminae. The fully coupled electrical-structural formulation is general and is able to handle arbitrary doubly curved laminated composite and isotropic shell structures. A square and a triangular cantilever isotropic plates are modeled using the MIN6 elements to demonstrate the anisotropic actuation of a surface bonded MFC actuator for coupled bending and twisting plate motions. Steady state bending and twisting modal amplitudes of the cantilever square and triangular plates with MFC actuator are compared with the plate's modal amplitudes with traditional PZT 5A actuator. Frequency Response Function (FRF) for the square plate with MFC and PZT 5A are also compared.

Paper Details

Date Published: 21 August 2001
PDF: 12 pages
Proc. SPIE 4326, Smart Structures and Materials 2001: Modeling, Signal Processing, and Control in Smart Structures, (21 August 2001); doi: 10.1117/12.436491
Show Author Affiliations
M. Salim Azzouz, Old Dominion Univ. (United States)
Jeffrey S. Bevan, Old Dominion Univ. (United States)
Jeng-Jong Ro, Dayeh Univ. (Taiwan)
Chuh Mei, Old Dominion Univ. (United States)

Published in SPIE Proceedings Vol. 4326:
Smart Structures and Materials 2001: Modeling, Signal Processing, and Control in Smart Structures
Vittal S. Rao, Editor(s)

© SPIE. Terms of Use
Back to Top