Share Email Print

Proceedings Paper

Experimental validation of a thermoelastic model for SMA hybrid composites
Author(s): Travis L. Turner
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

This study presents results from experimental validation of a recently developed model for predicting the thermomechanical behavior of shape memory alloy hybrid composite (SMAHC) structures, composite structures with an embedded SMA constituent. The model captures the material nonlinearity of the material system with temperature and is capable of modeling constrained, restrained, or free recovery behavior from experimental measurement of fundamental engineering properties. A brief description of the model and analysis procedures is given, followed by an overview of a parallel effort to fabricate and characterize the material system of SMAHC specimens. Static and dynamic experimental configurations for the SMAHC specimens are described and experimental results for thermal post-buckling and random response are presented. Excellent agreement is achieved between the measured and predicted results, fully validating the theoretical model for constrained recovery behavior of SMAHC structures.

Paper Details

Date Published: 21 August 2001
PDF: 12 pages
Proc. SPIE 4326, Smart Structures and Materials 2001: Modeling, Signal Processing, and Control in Smart Structures, (21 August 2001); doi: 10.1117/12.436475
Show Author Affiliations
Travis L. Turner, NASA Langley Research Ctr. (United States)

Published in SPIE Proceedings Vol. 4326:
Smart Structures and Materials 2001: Modeling, Signal Processing, and Control in Smart Structures
Vittal S. Rao, Editor(s)

© SPIE. Terms of Use
Back to Top