Share Email Print
cover

Proceedings Paper

Influence of lamination direction on fracture behavior and mechanical properties of TiNi SMA wire-embedded CFRP smart composites
Author(s): Byung-Koog Jang; Ja-Ho Koo; Nobuyuki Toyama; Yoshio Akimune; Teruo Kishi
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

TiNi/CFRP composites were fabricated by hot-pressing in the temperature range of 130-180 degree(s)C, by controlling the applied pressure. The TiNi wires were embedded as an 1mm interval into the center of CFRP layers and CFRP host materials were stacked as 0, 30, 60 and 90 degrees configuration on tensile direction, respectively. The stress-strain curve and tensile strength of composites strongly depends on stacking direction of carbon fibers. The tensile strength of TiNi/CFRP composites with stacking direction of 0 and 90 degrees configuration are about 1.2GPa and 50MPa, respectively. The microstructural properties of TiNi/CFRP composites were observed by SEM. Pore and/or voids were found to congregate near the embedded TiNi wire and they increased in proportion to stacking direction of carbon fibers. Larger pores and interfacial crack were also observed at interface between TiNi wires and epoxy resin. Furthermore, the fracture behavior was studied by an AE technique during tensile test, to analyze the fracture process. The effects of surface treatment of TiNi wire by acid etching to improve the interfacial bonding strength between TiNi wire and epoxy matrix are also investigated. The average interfacial bonding strength of the TiNi wire embedded in CFRP matrix was evaluated by pull out test. It was confirmed that surface treatment of TiNi wire by acid etching improved the interfacial bonding strength. Acid etching by HF+HNO3 mixed solution significantly increased the interfacial bonding strength. The damage recovery effect of SMA in specimen was successfully confirmed by heating above 70 degree(s)C.

Paper Details

Date Published: 21 August 2001
PDF: 10 pages
Proc. SPIE 4326, Smart Structures and Materials 2001: Modeling, Signal Processing, and Control in Smart Structures, (21 August 2001); doi: 10.1117/12.436473
Show Author Affiliations
Byung-Koog Jang, National Institute for Advanced Interdisciplinary Research (Japan)
Ja-Ho Koo, National Institute for Advanced Interdisciplinary Research (Japan)
Nobuyuki Toyama, National Institute for Advanced Interdisciplinary Research (Japan)
Yoshio Akimune, National Institute for Advanced Interdisciplinary Research (Japan)
Teruo Kishi, National Institute for Advanced Interdisciplinary Research (Japan)


Published in SPIE Proceedings Vol. 4326:
Smart Structures and Materials 2001: Modeling, Signal Processing, and Control in Smart Structures
Vittal S. Rao, Editor(s)

© SPIE. Terms of Use
Back to Top