Share Email Print
cover

Proceedings Paper

Modeling the effect of piezoceramic hysteresis in structural vibration control
Author(s): Mehmet Bulent Ozer; Thomas J. Royston
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Dielectric hysteresis in piezoceramic transducers can degrade their performance in structural vibration control applications. Different hysteresis models have been applied to piezoelectric transducers, including those based on Preisach, Jiles-Atherton and Ishlinskii concepts. Relationships between these and other models, new experimental identification schemes and multi-term describing function representations of some of them are reviewed. Then, system equations that incorporate the hysteretic behavior are formulated for two pedagogical smart structural systems: a passively shunted / actively driven PZT wafer on (1) a simply supported thin plate and (2) a simply supported thin beam. The effect of PZT hysteresis on optimized passive and hybrid vibration control strategies is evaluated.

Paper Details

Date Published: 21 August 2001
PDF: 12 pages
Proc. SPIE 4326, Smart Structures and Materials 2001: Modeling, Signal Processing, and Control in Smart Structures, (21 August 2001); doi: 10.1117/12.436462
Show Author Affiliations
Mehmet Bulent Ozer, Univ. of Illinois/Chicago (United States)
Thomas J. Royston, Univ. of Illinois/Chicago (United States)


Published in SPIE Proceedings Vol. 4326:
Smart Structures and Materials 2001: Modeling, Signal Processing, and Control in Smart Structures
Vittal S. Rao, Editor(s)

© SPIE. Terms of Use
Back to Top