Share Email Print

Proceedings Paper

Temperature sensitivity of UV-induced Bragg gratings in silica-based waveguides on crystallized glass substrate
Author(s): Kenji Kintaka; Junji Nishii
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

We have fabricated silica-based waveguide Bragg grating devices and have investigated temperature sensitivity of the Bragg wavelengths. Temperature sensitivity of Bragg wavelength is caused by temperature dependence of effective refractive index and thermal expansion. We examined boron-codoped germanosilicate glasses as waveguide materials in order to decrease a temperature sensitivity of refractive index. The boron-codoped germanosilicate films were fabricated by a plasma enhanced chemical vapor deposition. We adopted Si, silica, and crystallized glass as substrates in order to control the thermal expansion of the waveguides. Bragg grating with 0.53 μm period was formed by irradiation with a KrF excimer laser light through a phase mask. The Bragg wavelength shift of 9.7pm/°C was obtained in the B-Ge-SiO2 core waveguide on a silica substrate, while the Bragg wavelength shift was 11pm/°C in the with Ge-SiO2 core waveguide on a Si substrate, which was a conventional-type waveguide Bragg grating device. The Bragg wavelength shift was reduced to 7.8pm/°C by using B-Ge-SiO2 core and a crystallized glass substrate with zero thermal expansion coefficient, which was 2/3 of the value of the conventional waveguide Bragg grating device.

Paper Details

Date Published: 18 June 2002
PDF: 9 pages
Proc. SPIE 4640, Integrated Optics: Devices, Materials, and Technologies VI, (18 June 2002); doi: 10.1117/12.436172
Show Author Affiliations
Junji Nishii

Published in SPIE Proceedings Vol. 4640:
Integrated Optics: Devices, Materials, and Technologies VI
Yakov S. Sidorin; Ari Tervonen, Editor(s)

© SPIE. Terms of Use
Back to Top