Share Email Print

Proceedings Paper

High-resolution multigrating spectrometer for high-quality deep-UV light source production
Author(s): Toru Suzuki; Hirokazu Kubo; Takashi Suganuma; Toshio Yamashita; Osamu Wakabayashi; Hakaru Mizoguchi
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Deep UV lithography using ArF excimer laser requires very narrower spectral properties. However, spectrometers that have sufficient resolution to evaluate the ArF excimer laser are commercially not available. High-resolution multi-grating spectrometers for measuring spectral bandwidth at full width at half maximum (FWHM) and spectral purity of ArF excimer lasers are introduced. To achieve high resolution, a special grating arrangement called HEXA (Holographic and Echelle Gratings Expander Arrangement) is designed. A holographic grating and an echelle grating are used so that the input light is expanded and diffracted several times. The resolution of the HEXA spectrometer is more than two million. To evaluate the resolution and the stability of the spectrometer, we measured the instrument function by a coherent light source whose wavelength is same as ArF excimer laser. The experimentally obtained resolution of the spectrometer is 0.09pm or 0.05pm that is selectable. The measured dispersion has a good agreement with the theoretical value. To evaluate the spectral properties of excimer lasers, the instrument function must be very stable. This high-resolution spectrometer enables high quality control of line-narrowed ArF excimer laser mass production.

Paper Details

Date Published: 14 September 2001
PDF: 8 pages
Proc. SPIE 4346, Optical Microlithography XIV, (14 September 2001); doi: 10.1117/12.435662
Show Author Affiliations
Toru Suzuki, Gigaphoton, Inc. (Japan)
Hirokazu Kubo, Gigaphoton Inc. (Japan)
Takashi Suganuma, Komatsu Ltd. (Japan)
Toshio Yamashita, Komatsu Ltd. (Japan)
Osamu Wakabayashi, Gigaphoton, Inc. (Japan)
Hakaru Mizoguchi, Gigaphoton, Inc. (Japan)

Published in SPIE Proceedings Vol. 4346:
Optical Microlithography XIV
Christopher J. Progler, Editor(s)

© SPIE. Terms of Use
Back to Top