Share Email Print

Proceedings Paper

Aids for driving lithography hard: wafer-level process control features
Author(s): Emily Fisch; Reginald R. Bowley; James A. Bruce; Orest Bula
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

This paper investigates the design of targets for in-line lithography process control. The need for wafer-level understanding and control of defocus has driven the development of several of methods for detecting focus shifts. The methods are typically based on measurements of line-end shortening and use optical methods. This work starts a dual-tone pair of arrays, one built from resist lines and the other from resist troughs. These process control targets area also known as schnitzls. The influence of the shape of the individual lines, the line pitch and separation of arrays are investigated using both simulations and wafer resist CDSEM measurements. A theoretical model was applied to all data to enable objective comparison of different designs. A guide to dose and defocus target design for process window monitoring is provided as part of the summary.

Paper Details

Date Published: 14 September 2001
PDF: 8 pages
Proc. SPIE 4346, Optical Microlithography XIV, (14 September 2001); doi: 10.1117/12.435633
Show Author Affiliations
Emily Fisch, IBM Microelectronics Div. (United States)
Reginald R. Bowley, IBM Microelectronics Div. (United States)
James A. Bruce, IBM Microelectronics Div. (United States)
Orest Bula, IBM Microelectronics Div. (United States)

Published in SPIE Proceedings Vol. 4346:
Optical Microlithography XIV
Christopher J. Progler, Editor(s)

© SPIE. Terms of Use
Back to Top