Share Email Print
cover

Proceedings Paper

Diffuse ultrasonics for inspection of concrete
Author(s): Joseph A. Turner
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The propagation and scattering of high-frequency ultrasound in concrete is discussed. Frequencies above 100 kHz have wavelengths short enough for sensitivity to microcracking. However, the heterogeneous composition of concrete causes the ultrasound at such frequencies to scatter considerably. Theoretical descriptions of the scattering attenuations based on a stochastic wave equation are discussed. These expressions require information about the two-point spatial correlation function. The form for this function is proposed and confirmed experimentally. Finally, ultrasound diffusion experiments are discussed. In the limit of many scattering events, the ultrasonic energy density in circular cylinders of concrete is shown to evolve in accordance with a one-dimensional diffusion equation. The ultrasonic diffusivity was measured experimentally over the frequency range of 100-900 kHz. Theoretical descriptions of the diffusivity are in accord with the experimental values. Such frequencies are well above typical frequencies used for concrete inspection. Thus, it is anticipated that the use of these higher frequencies will result in new techniques for characterizing material properties and damage in concrete structures.

Paper Details

Date Published: 3 August 2001
PDF: 10 pages
Proc. SPIE 4337, Health Monitoring and Management of Civil Infrastructure Systems, (3 August 2001); doi: 10.1117/12.435580
Show Author Affiliations
Joseph A. Turner, Univ. of Nebraska/Lincoln (United States)


Published in SPIE Proceedings Vol. 4337:
Health Monitoring and Management of Civil Infrastructure Systems
Steven B. Chase; A. Emin Aktan, Editor(s)

© SPIE. Terms of Use
Back to Top