Share Email Print

Proceedings Paper

Ultrasonic characterization of shot-peened metal surfaces
Author(s): Anton I. Lavrentyev; William A. Veronesi
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Shot peening is a well-known method for extending the fatigue life of metal components by introducing near-surface compressive residual stresses. The capability to nondestructively evaluate near-surface residual stress would greatly aid the assurance of proper fatigue life in shot-peened components. This paper describes our work on near-surface residual stress measurement by an ultrasonic surface wave method. In this method, a variation of ultrasonic surface wave speed with shot peening intensity is measured. Since the effective wave penetration depth is inversely related to the excitation frequency, the method has the potential to provide the stress-depth profile. The paper presents results from an ultrasonic characterization study of shot peened Al-7075 and Waspaloy surfaces. Rayleigh wave velocity measurements by a V(z)-curve method were made on smooth and shot peened samples using line-focus ultrasonic transducers. Several factors were found to contribute to the surface wave velocity measurements: surface roughness, near-surface grain reorientation (texture), dislocation density increase, and residual stress. In this paper we estimate quantitatively the effects of each factor and discuss how these effects can be separated and accounted for during residual stress measurement.

Paper Details

Date Published: 3 August 2001
PDF: 12 pages
Proc. SPIE 4336, Nondestructive Evaluation of Materials and Composites V, (3 August 2001); doi: 10.1117/12.435572
Show Author Affiliations
Anton I. Lavrentyev, United Technologies Research Ctr. (United States)
William A. Veronesi, United Technologies Research Ctr. (United States)

Published in SPIE Proceedings Vol. 4336:
Nondestructive Evaluation of Materials and Composites V
George Y. Baaklini; Eric S. Boltz; Steven M. Shepard; Peter J. Shull, Editor(s)

© SPIE. Terms of Use
Back to Top