Share Email Print
cover

Proceedings Paper

Minimization of thermomechanical side effects in IR ablation by use of Q-switched double pulses
Author(s): Alfred Vogel; Peter Schmidt; Barbara Flucke
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Holmium laser pulses (λ= 2.1 m) are often used for medical laser applications inside the human body, because they can be transmitted through low-OH quartz fibers, and they are relatively well absorbed in water and biological tissues. However, large thermal damage zones were observed after application of free-running holmium laser pulses for arthroscopic surgery. The aim of our study is to reduce thermal damage without introducing additional mechanical damage and without impairing the hemostatic action of the laser radiation. For that purpose we use double pulses from a custom-made acousto-optically Q- switched thulium laser (λ = 2.0 μm) that can emit pulses with energies of up to 150 mJ. The penetration depth of the thulium laser radiation (170 μm) as well as the thermal damage zone are only half as large as that of the holmium laser. The use of Q-switched pulses creates stress confinement conditions leading to a more efficient ablation than with free running pulses. For a given ablation depth, the residual heat deposited in the tissue is therefore smaller than with free running pulses and, hence, also the thermal damage zone. This reduction of thermal damage is possible even though the free-running pulses already fulfil the condition for thermal confinement. The thermal damage zone was only 100 μm for the Q-switched thulium pulses but 200 μm for the free-running pulses. The degree of thermal damage was, in addition, much more severe for the free-running pulses. Q-switched pulses lead to an explosive ablation of the target material. In a liquid environment, this gives rise to the formation of cavitation effects, we release a pre-pulse with small energy (40 mJ) before each ablation pulse of up to 150 mJ. The pre-pulse produces a small cavity that is then filled by the ablation products of the main pulse. The ablation pulse is emitted about 100 μs after the pre-pulse when the bubble is maximally expanded. This way, no additional cavitation effects are induced, and the transformation of laser energy into mechanical energy is minimized. The pre-pulse creates, furthermore, a channel through which the laser light is transmitted, avoiding absorption losses in the liquid between fiber tip and target. The ablation efficiency was 2-3 times better for the Q-switched pulses than for the free-running pulses.

Paper Details

Date Published: 9 July 2001
PDF: 8 pages
Proc. SPIE 4257, Laser-Tissue Interaction XII: Photochemical, Photothermal, and Photomechanical, (9 July 2001); doi: 10.1117/12.434703
Show Author Affiliations
Alfred Vogel, Medical Laser Ctr. Luebeck GmbH (Germany)
Peter Schmidt, Medical Laser Ctr. Luebeck GmbH (Germany)
Barbara Flucke, Medical Laser Ctr. Luebeck GmbH (Germany)


Published in SPIE Proceedings Vol. 4257:
Laser-Tissue Interaction XII: Photochemical, Photothermal, and Photomechanical
Donald Dean Duncan; Peter C. Johnson; Donald Dean Duncan; Steven L. Jacques; Peter C. Johnson, Editor(s)

© SPIE. Terms of Use
Back to Top