Share Email Print

Proceedings Paper

Programming high-performance reconfigurable computers
Author(s): Melissa C. Smith; Gregory D. Peterson
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

High Performance Computers (HPC) provide dramatically improved capabilities for a number of defense and commercial applications, but often are too expensive to acquire and to program. The smaller market and customized nature of HPC architectures combine to increase the cost of most such platforms. To address the problems with high hardware costs, one may create more inexpensive Beowolf clusters of dedicated commodity processors. Despite the benefit of reduced hardware costs, programming the HPC platforms to achieve high performance often proves extremely time-consuming and expensive in practice. In recent years, programming productivity gains come from the development of common APIs and libraries of functions to support distributed applications. Examples include PVM, MPI, BLAS, and VSIPL. The implementation of each API or library is optimized for a given platform, but application developers can write code that is portable across specific HPC architectures. The application of reconfigurable computing (RC) into HPC platforms promises significantly enhanced performance and flexibility at a modest cost. Unfortunately, configuring (programming) the reconfigurable computing nodes remains a challenging task and relatively little work to date has focused on potential high performance reconfigurable computing (HPRC) platforms consisting of reconfigurable nodes paired with processing nodes. This paper addresses the challenge of effectively exploiting HPRC resources by first considering the performance evaluation and optimization problem before turning to improving the programming infrastructure used for porting applications to HPRC platforms.

Paper Details

Date Published: 24 July 2001
PDF: 9 pages
Proc. SPIE 4525, Reconfigurable Technology: FPGAs and Reconfigurable Processors for Computing and Communications III, (24 July 2001); doi: 10.1117/12.434385
Show Author Affiliations
Melissa C. Smith, Univ. of Tennessee/Knoxville (United States)
Gregory D. Peterson, Univ. of Tennessee/Knoxville (United States)

Published in SPIE Proceedings Vol. 4525:
Reconfigurable Technology: FPGAs and Reconfigurable Processors for Computing and Communications III
John Schewel; Peter M. Athanas; Philip B. James-Roxby; John T. McHenry, Editor(s)

© SPIE. Terms of Use
Back to Top