Share Email Print

Proceedings Paper

Structural damage detection and estimation using a scanning laser vibrometer
Author(s): Perngjin Frank Pai; Seung-Yoon Lee; Mark J. Schulz
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

This paper presents a model-independent boundary effect evaluation (BEE) method for pinpointing crack locations and estimating crack sizes using only operational deflection shapes (ODSs) measured by a scanning laser vibrometer. An ODS consists of central and boundary solutions. Central solutions are periodic functions, and boundary solutions are exponentially decaying functions due to boundary constraints. The BEE method uses a sliding-window curve-fitting technique to extract boundary solutions from an experimental ODS. Because cracks introduce localized small boundaries to a structure, boundary solutions exist around cracks as well as structural boundaries. Since crack-induced boundary solutions show characteristics different from those of actual boundaries, cracks can be easily located. A local strain energy method is derived for estimating crack sizes. In the method, the crack-induced strain energy extracted from an ODS is compared with the one calculated using fracture mechanics to estimate the crack size. To verify the capability and accuracy of this BEE method, experiments are performed on six 22' X 1' X 0.25' 2024-T4 aluminum beams each having a through-the-width Mode I crack at its midpoint. These cracks are slots having a width of 0.039' and depths of 0.0625' (25% of the beam thickness), 0.05' (20%), 0.0375' (15%), 0.025' (10%), 0.0125' (5%), and 0.005' (2%), respectively. Results show that this BEE method is capable of locating and estimating small cracks.

Paper Details

Date Published: 24 July 2001
PDF: 12 pages
Proc. SPIE 4335, Advanced Nondestructive Evaluation for Structural and Biological Health Monitoring, (24 July 2001); doi: 10.1117/12.434160
Show Author Affiliations
Perngjin Frank Pai, Univ. of Missouri/Columbia (United States)
Seung-Yoon Lee, Univ. of Missouri/Columbia (United States)
Mark J. Schulz, North Carolina A&T State Univ. (United States)

Published in SPIE Proceedings Vol. 4335:
Advanced Nondestructive Evaluation for Structural and Biological Health Monitoring
Tribikram Kundu, Editor(s)

© SPIE. Terms of Use
Back to Top