Share Email Print
cover

Proceedings Paper

Smart variable stiffness control systems
Author(s): Satish Nagarajaiah; Nadathur Varadarajan
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

This paper presents a new and innovative semi-active variable stiffness tuned mass damper (SAIVS-TMD). The system has the distinct advantage of retuning in real time thus making the system robust to changes in building stiffness and damping, whereas the passive tuned mass damper (TMD) can only be tuned to a fixed frequency. The SAIVS-TMD is based on a novel semi-active variable stiffness control (SAIVS) device. SAIVS system requires nominal power for operation as compared to active tuned mass dampers. The SAIVS-TMD is retuned using a new control algorithm based on instantaneous frequency estimation using Hilbert transform and short-time Fourier transform (STFT). An analytical model of a three-story structure with SAIVS-TMD is developed. Numerical simulations are performed using the analytical model. The system is implemented in a 1:10 scale three-story scale model in real time using a digital signal processing system and controller. Shake table test results of the system with the SAIVS-TMD are presented. It is shown that the SAIVS-TMD is very effective in reducing the response and providing retuning capability when the building stiffness changes, whereas the TMD is mistuned and loses its effectiveness. Analytical modeling and comparisons between analytical and experimental results are also presented.

Paper Details

Date Published: 30 July 2001
PDF: 9 pages
Proc. SPIE 4330, Smart Structures and Materials 2001: Smart Systems for Bridges, Structures, and Highways, (30 July 2001); doi: 10.1117/12.434134
Show Author Affiliations
Satish Nagarajaiah, Rice Univ. (United States)
Nadathur Varadarajan, Rice Univ. (United States)


Published in SPIE Proceedings Vol. 4330:
Smart Structures and Materials 2001: Smart Systems for Bridges, Structures, and Highways
S.-C. Liu, Editor(s)

© SPIE. Terms of Use
Back to Top