Share Email Print
cover

Proceedings Paper

Domain switching criteria for piezoelectric materials
Author(s): Chin-Teh Sun; Ajit Achuthan
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Experimental results reported by many researchers showed that the coercive electric field for ferroelectric switching depends on mechanical stresses present in the material. Similarly, the coercive stress for ferroelastic switching depends on the electric field. To model these dependences, several domain switching criteria based on different considerations have been proposed in earlier studies. In this paper, these domain switching criteria are briefly reviewed and the predictions based on these domain switching criteria are compared with the available experimental data for 180 degree(s) domain switching in PZT. It is found that the predictions do not match the experimental results. Motivated by this observation, a new domain switching criterion based on internal energy density is proposed. This new criterion is found to yield very good predictions compared with the existing experimental results for 180 degree(s) domain switching in PZT. To verify the new domain switching criterion for 90 degree(s) switching, experiments were conducted using PZT-5H. The new experimental result indicates that the new domain switching criterion gives a much better prediction than other existing criteria.

Paper Details

Date Published: 11 July 2001
PDF: 10 pages
Proc. SPIE 4333, Smart Structures and Materials 2001: Active Materials: Behavior and Mechanics, (11 July 2001); doi: 10.1117/12.432762
Show Author Affiliations
Chin-Teh Sun, Purdue Univ. (United States)
Ajit Achuthan, Purdue Univ. (United States)


Published in SPIE Proceedings Vol. 4333:
Smart Structures and Materials 2001: Active Materials: Behavior and Mechanics
Christopher S. Lynch, Editor(s)

© SPIE. Terms of Use
Back to Top