Share Email Print
cover

Proceedings Paper

RF magnetron sputtered crystalline TiNiCu shape memory alloy thin film
Author(s): Yongqing Fu; Xu Huang; Hejun Du; Yong Liu
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Shape memory alloys (SMAs) offer a unique combination of novel properties, such as shape memory effect, super- elasticity, biocompatibility and high damping capacity, and thin film SMAs have the potential to become a primary actuating mechanism for micro-actuators. In this study, TiNiCu films were successfully prepared by mix sputtering of a Ti55Ni45 target with a separated Cu target. Crystalline structure, residual stress and phase transformation properties of the TiNiCu films were investigated using X-ray diffraction (XRD), differential scanning calorimeter (DSC), and curvature measurement methods. Effects of the processing parameters on the film composition, phase transformation and shape-memory effects were analyzed. Effects of the processing parameters on the film composition, phase transformation and shape-memory effects were analyzed. Results showed that films prepared at high Ar gas pressure exhibited a columnar structure, while films deposited at a low Ar gas pressure showed smooth and featureless structure. Chemical composition of TiNiCu thin films was dependent on the DC power of copper target. DSC, XRD and curvature measurement revealed clearly the martensitic transformation of the deposited TiNiCu films. When the freestanding film was heated and cooled, a two-way shape memory effect can be clearly observed.

Paper Details

Date Published: 11 July 2001
PDF: 7 pages
Proc. SPIE 4333, Smart Structures and Materials 2001: Active Materials: Behavior and Mechanics, (11 July 2001); doi: 10.1117/12.432758
Show Author Affiliations
Yongqing Fu, Nanyang Technological Univ. (Singapore)
Xu Huang, Nanyang Technological Univ. (Singapore)
Hejun Du, Nanyang Technological Univ. (Singapore)
Yong Liu, Nanyang Technological Univ. (Singapore)


Published in SPIE Proceedings Vol. 4333:
Smart Structures and Materials 2001: Active Materials: Behavior and Mechanics
Christopher S. Lynch, Editor(s)

© SPIE. Terms of Use
Back to Top