Share Email Print

Proceedings Paper

Feedback control of the bending response of ionic polymer-metal composite actuators
Author(s): Kiran Mallavarapu; Kenneth M. Newbury; Donald J. Leo
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Many physical models of ionic polymer have been developed. However, these models are not suitable for use in the design of control systems for Ionic Polymer-Metal Composite(IPMC) actuators. In this paper an empirical model of IPMC is developed and used for closed-loop control. The empirical model is developed by measuring the step response of 20mm x 10mm IPMC actuator in a cantilever configuration . Using this empirical model, a compensator was designed using a linear observer-estimator in state space. Since the IPMC has a slow time constant, it cannot be used to actuate high frequency signals. The design objectives were to constrain the control voltage to less than 2 Volts and minimize the settling time by using feedback control. The controller was designed using Linear Quadratic Regulator(LQR) techniques which reduced the number of design parameters to one variable. This LQR parameter was varied and simulations were performed which showed settling time of 0.15 seconds for closed-loop as compared to a open-loop settling time of 7 seconds. The maximum control input varied from 1.1 Volts to 2.5 Volts for the simulations depending on the LQR parameter. The controller was later used in experimentation to check simulations. Results obtained were consistent to a high degree. Closed-loop settling time was observed to be 0.95 seconds and the maximum control input was less than 2.3 Volts. Experimentation also revealed a high overshoot and oscillations before settling which occurred due to the excitation of IPMC at its natural frequency. Thus, need to include the higher frequency dynamics was highlighted.

Paper Details

Date Published: 16 July 2001
PDF: 10 pages
Proc. SPIE 4329, Smart Structures and Materials 2001: Electroactive Polymer Actuators and Devices, (16 July 2001); doi: 10.1117/12.432660
Show Author Affiliations
Kiran Mallavarapu, Virginia Polytechnic Institute and State Univ. (United States)
Kenneth M. Newbury, Virginia Polytechnic Institute and State Univ. (United States)
Donald J. Leo, Virginia Polytechnic Institute and State Univ. (United States)

Published in SPIE Proceedings Vol. 4329:
Smart Structures and Materials 2001: Electroactive Polymer Actuators and Devices
Yoseph Bar-Cohen, Editor(s)

© SPIE. Terms of Use
Back to Top