Share Email Print

Proceedings Paper

Time-domain Green's functions of realistic VCSEL cavities
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

In this work the optical cavity of a vertical-cavity surface-emitting laser (VCSEL) is analyzed with the goal of performing a coupled electro-optical simulation of the device. For this simulation, the eigenmodes and the eigenvalues of the optical cavity have to be obtained. A common approach is to treat Maxwell's equations in the frequency domain and to solve the resulting algebraic eigenvalue equation. As an alternative, the electromagnetic problem is solved in time-domain. The response of the optical cavity is calculated by the finite-difference time-domain (FDTD) method. The optical wave propagation is modeled rigorously, including evanescent and propagating waves. From the FDTD simulation, a steady state optical intensity pattern is extracted. The eigenvalues of the dominant modes are determined using a Pade type approximation.

Paper Details

Date Published: 9 July 2001
PDF: 9 pages
Proc. SPIE 4283, Physics and Simulation of Optoelectronic Devices IX, (9 July 2001); doi: 10.1117/12.432556
Show Author Affiliations
Andreas Witzig, Swiss Federal Institute of Technology/Zurich (Switzerland)
Matthias Streiff, Swiss Federal Institute of Technology/Zurich (Switzerland)
Wolfgang Fichtner, Swiss Federal Institute of Technology/Zurich (Switzerland)

Published in SPIE Proceedings Vol. 4283:
Physics and Simulation of Optoelectronic Devices IX
Yasuhiko Arakawa; Peter Blood; Marek Osinski, Editor(s)

© SPIE. Terms of Use
Back to Top