Share Email Print
cover

Proceedings Paper

Laser direct writing of microbatteries for integrated power electronics
Author(s): Alberto Pique; Karen E. Swider-Lyons; David W. Weir; C. T. Love; R. Modi
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

A novel laser-based process developed at the Naval Research Laboratory has been used to fabricate pseudocapacitors and microbatteries with tailored capacities for small electronic devices having size and/or weight restrictions. This process, called MAPLE DW (for matrix-assisted pulsed-laser evaporation direct write) can deposit rugged mesoscale (1 micrometers to 10 mm) electronic components over any type of substrate. A pulsed laser operating at 355 nm is used to forward transfer material from a tape-cast ribbon to a suitable substrate to form a precision design. With MAPLE DW, customized mesoscale electronic components can be produced, eliminating the need for multiple fabrication techniques and surface-mounted components. Direct write processing is especially attractive for the fabrication of micro-power sources and systems. The versatility of laser processing allows battery designs to be easily modified. Batteries and/or pseudocapacitors can be integrated with power management electronics to deliver a wide range of power outputs. By building power sources directly on electronic components, the weight of the power sources is decreased as the electronic substrate becomes part of the battery packaging and the lengths of interconnects are shortened, reducing conductor losses. RuOxHy pseudocapacitors deposited with MAPLE DW show good storage capacities. Pads of hydrous RuO2 having dimensions of 2.2 mm x 1.0 mm x 30 micrometers have been deposited in a planar configuration on gold current collectors. Rechargeable Zn/MnO2 alkaline microbatteries comprising of MnO2, Zn, an ethyl cellulose separator barrier layer and a KOH electrolyte have also been fabricated by MAPLE DW. The resulting structures with dimensions of 1.5 mm x 1.5 mm x 60 micrometers represent the first demonstration of a multilayer microbattery made by MAPLE DW. The performance of these prototypes are shown and the potential impact of MAPLE DW for the fabrication of novel microbattery systems for integrated power applications are discussed.

Paper Details

Date Published: 29 June 2001
PDF: 7 pages
Proc. SPIE 4274, Laser Applications in Microelectronic and Optoelectronic Manufacturing VI, (29 June 2001); doi: 10.1117/12.432524
Show Author Affiliations
Alberto Pique, Naval Research Lab. (United States)
Karen E. Swider-Lyons, Naval Research Lab. (United States)
David W. Weir, NOVA Research, Inc. (United States)
C. T. Love, Naval Research Lab. (United States)
R. Modi, Naval Research Lab. (United States)


Published in SPIE Proceedings Vol. 4274:
Laser Applications in Microelectronic and Optoelectronic Manufacturing VI
Malcolm C. Gower; Henry Helvajian; Koji Sugioka; Jan J. Dubowski, Editor(s)

© SPIE. Terms of Use
Back to Top