Share Email Print

Proceedings Paper

Full-field speckle techniques in blood microcirculation monitoring
Author(s): Dmitry A. Zimnyakov; Alexey B. Mishin; Maria M. Gonik
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Statistical analysis of images of time-integrated dynamic speckle patterns is considered as the tool for diagnostics and imaging of in vivo tissue dynamics such as blood microcirculation in superficial layers of human tissues and organs. Basic approach for blood microcirculation monitoring using the contrast analysis of time-averaged speckle images is known as LASCA (Laser Speckle Contrast Analysis) technique. This paper presents the modified version of LASCA, which is based on application of the localized probe light source and the spatial filtration of analyzed speckle pattern in the object plane. Being compared with classical LASCA technique, this method has the certain disadvantage as the necessity of scanning procedure to provide the reconstruction of maps of blood microcirculation parameters, but it gives the additional possibilities for the analysis of depth distributions of these parameters. Theoretical background for the depth-resolved analysis of blood microcirculation parameters on the basis of the concept of effective optical paths distributions for multiple scattered probe light is considered.

Paper Details

Date Published: 4 May 2001
PDF: 8 pages
Proc. SPIE 4241, Saratov Fall Meeting 2000: Optical Technologies in Biophysics and Medicine II, (4 May 2001); doi: 10.1117/12.431548
Show Author Affiliations
Dmitry A. Zimnyakov, Saratov State Univ. (Russia)
Alexey B. Mishin, Saratov State Technical Univ. (Russia)
Maria M. Gonik, Saratov State Univ. (Russia)

Published in SPIE Proceedings Vol. 4241:
Saratov Fall Meeting 2000: Optical Technologies in Biophysics and Medicine II
Valery V. Tuchin, Editor(s)

© SPIE. Terms of Use
Back to Top