Share Email Print
cover

Proceedings Paper

Shape-based and texture-based feature extraction for classification of microcalcifications in mammograms
Author(s): Hamid Soltanian-Zadeh; Siamak Pourabdollah-Nezhad; Farshid Rafiee Rad
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

This paper presents and compares two image processing methods for differentiating benign from malignant microcalcifications in mammograms. The gold standard method for differentiating benign from malignant microcalcifications is biopsy, which is invasive. The goal of the proposed methods is to reduce rate of biopsies with negative results. In the first method, we extract 17 shape features from each mammogram. These features are related to shapes of individual microcalcifications or to their clusters. In the second method, we extract 44 texture features from each mammogram using co-occurrence method of Haralick. Next, we select best features from each set using a genetic algorithm, to maximize area under ROC curve. This curve is created using a k-nearest neighbor (kNN) classifier and a malignancy criterion. Finally, we evaluate the methods by comparing ROC's with greatest areas obtained using each method. We applied the proposed methods, with different values of k in kNN classifier, to 74 malignant and 29 benign microcalcification clusters. Truth for each mammogram was established based on the biopsy results. We found greatest area under ROC curve for each set of features used in each method. For shape features this area was 0.82 (k = 7) and for Haralick features it was 0.72(k=9).

Paper Details

Date Published: 3 July 2001
PDF: 10 pages
Proc. SPIE 4322, Medical Imaging 2001: Image Processing, (3 July 2001); doi: 10.1117/12.431100
Show Author Affiliations
Hamid Soltanian-Zadeh, Univ. of Tehran (Iran), Henry Ford Health System, and Institute for Studies in Theoretical (United States)
Siamak Pourabdollah-Nezhad, Institute for Studies in Theoretical Physics and Mathematics and Wayne State Univ. (United States)
Farshid Rafiee Rad, Institute for Studies in Theoretical Physics and Mathematics and Univ. of Minnesota (United States)


Published in SPIE Proceedings Vol. 4322:
Medical Imaging 2001: Image Processing
Milan Sonka; Kenneth M. Hanson, Editor(s)

© SPIE. Terms of Use
Back to Top