Share Email Print
cover

Proceedings Paper

Development of a high-performance noise-reduction filter for tomographic reconstruction
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

We propose a new noise-reduction method for tomographic reconstruction. The method incorporates a priori information on the source image for allowing the derivation of the energy spectrum of its ideal sinogram. In combination with the energy spectrum of the Poisson noise in the measured sinogram, we are able to derive a Wiener-like filter for effective suppression of the sinogram noise. The filtered backprojection (FBP) algorithm, with a ramp filter, is then applied to the filtered sinogram to produce tomographic images. The resulting filter has a closed-form expression in the frequency space and contains a single user-adjustable regularization parameter. The proposed method is hence simple to implement and easy to use. In contrast to the ad hoc apodizing windows, such as Hanning and Butterworth filters, that are commonly used in the conventional FBP reconstruction, the proposed filter is theoretically more rigorous as it is derived by basing upon an optimization criterion, subject to a known class of source image intensity distributions.

Paper Details

Date Published: 3 July 2001
PDF: 11 pages
Proc. SPIE 4322, Medical Imaging 2001: Image Processing, (3 July 2001); doi: 10.1117/12.431060
Show Author Affiliations
Chien-Min Kao, Univ. of Chicago (United States)
Xiaochuan Pan, Univ. of Chicago (United States)


Published in SPIE Proceedings Vol. 4322:
Medical Imaging 2001: Image Processing
Milan Sonka; Kenneth M. Hanson, Editor(s)

© SPIE. Terms of Use
Back to Top