Share Email Print

Proceedings Paper

Application of adaptive boosting to EP-derived multilayer feed-forward neural networks (MLFN) to improve benign/malignant breast cancer classification
Author(s): Walker H. Land Jr.; Timothy D. Masters; Joseph Y. Lo; Dan McKee
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

A new neural network technology was developed for improving the benign/malignant diagnosis of breast cancer using mammogram findings. A new paradigm, Adaptive Boosting (AB), uses a markedly different theory in solutioning Computational Intelligence (CI) problems. AB, a new machine learning paradigm, focuses on finding weak learning algorithm(s) that initially need to provide slightly better than random performance (i.e., approximately 55%) when processing a mammogram training set. Then, by successive development of additional architectures (using the mammogram training set), the adaptive boosting process improves the performance of the basic Evolutionary Programming derived neural network architectures. The results of these several EP-derived hybrid architectures are then intelligently combined and tested using a similar validation mammogram data set. Optimization focused on improving specificity and positive predictive value at very high sensitivities, where an analysis of the performance of the hybrid would be most meaningful. Using the DUKE mammogram database of 500 biopsy proven samples, on average this hybrid was able to achieve (under statistical 5-fold cross-validation) a specificity of 48.3% and a positive predictive value (PPV) of 51.8% while maintaining 100% sensitivity. At 97% sensitivity, a specificity of 56.6% and a PPV of 55.8% were obtained.

Paper Details

Date Published: 3 July 2001
PDF: 8 pages
Proc. SPIE 4322, Medical Imaging 2001: Image Processing, (3 July 2001); doi: 10.1117/12.431058
Show Author Affiliations
Walker H. Land Jr., Binghamton Univ. (United States)
Timothy D. Masters, TMAIC (United States)
Joseph Y. Lo, Duke Univ. Medical Ctr. (United States)
Dan McKee, Binghamton Univ. (United States)

Published in SPIE Proceedings Vol. 4322:
Medical Imaging 2001: Image Processing
Milan Sonka; Kenneth M. Hanson, Editor(s)

© SPIE. Terms of Use
Back to Top