Share Email Print

Proceedings Paper

Segmentation of cerebral MRI scans using a partial volume model, shading correction, and an anatomical prior
Author(s): Aljaz Noe; Stanislav Kovacic; James C. Gee
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

A mixture-model clustering algorithm is presented for robust MRI brain image segmentation in the presence of partial volume averaging. The method uses additional classes to represent partial volume voxels of mixed tissue type in the image. Probability distributions for partial volume voxels are modeled accordingly. The image model also allows for tissue-dependent variance values and voxel neighborhood information is taken into account in the clustering formulation. Additionally we extend the image model to account for a low frequency intensity inhomogeneity that may be present in an image. This so-called shading effect is modeled as a linear combination of polynomial basis functions, and is estimated within the clustering algorithm. We also investigate the possibility of using additional anatomical prior information obtained by registering tissue class template images to the image to be segmented. The final result is the estimated fractional amount of each tissue type present within a voxel in addition to the label assigned to the voxel. A parallel implementation of the method is evaluated using synthetic and real MRI data.

Paper Details

Date Published: 3 July 2001
PDF: 12 pages
Proc. SPIE 4322, Medical Imaging 2001: Image Processing, (3 July 2001); doi: 10.1117/12.431028
Show Author Affiliations
Aljaz Noe, Univ. of Ljubljana (Slovenia)
Stanislav Kovacic, Univ. of Ljubljana (Slovenia)
James C. Gee, Univ. of Pennsylvania (United States)

Published in SPIE Proceedings Vol. 4322:
Medical Imaging 2001: Image Processing
Milan Sonka; Kenneth M. Hanson, Editor(s)

© SPIE. Terms of Use
Back to Top