Share Email Print

Proceedings Paper

Evaluation of segmentation using lung nodule phantom CT images
Author(s): Philip F. Judy; Francine L. Jacobson
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Segmentation of chest CT images has several purposes. In lung-cancer screening programs, for nodules below 5mm, growth measured from sequential CT scans is the primary indication of malignancy. Automatic segmentation procedures have been used as a means to insure a reliable measurement of lung nodule size. A lung nodule phantom was developed to evaluate the validity and reliability of size measurements using CT images. Thirty acrylic spheres and cubes (2-8 mm) were placed in a 15cm diameter disk of uniform-material that simulated the lung. To demonstrate the use of the phantom, it was scanned using out hospital's lung-cancer screening protocol. A simple, yet objective threshold technique was used to segment all of the images in which the objects were visible. All the pixels above a common threshold (the mean of the lung material and the acrylic CT numbers) were considered within the nodule. The relative bias did not depend on the shape of the objects and ranged from -18% for the 2 mm objects to -2.5% for 8-mm objects. DICOM image files of the phantom are available for investigators with an interest in using the images to evaluate and compare segmentation procedures.

Paper Details

Date Published: 3 July 2001
PDF: 6 pages
Proc. SPIE 4322, Medical Imaging 2001: Image Processing, (3 July 2001); doi: 10.1117/12.431020
Show Author Affiliations
Philip F. Judy, Brigham and Women's Hospital and Harvard Medical School (United States)
Francine L. Jacobson, Brigham and Women's Hospital and Harvard Medical School (United States)

Published in SPIE Proceedings Vol. 4322:
Medical Imaging 2001: Image Processing
Milan Sonka; Kenneth M. Hanson, Editor(s)

© SPIE. Terms of Use
Back to Top