Share Email Print

Proceedings Paper

Reduction of noise and image artifacts in computed tomography by nonlinear filtration of projection images
Author(s): Omer Demirkaya
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

This study investigates the efficacy of filtering two-dimensional (2D) projection images of Computer Tomography (CT) by the nonlinear diffusion filtration in removing the statistical noise prior to reconstruction. The projection images of Shepp-Logan head phantom were degraded by Gaussian noise. The variance of the Gaussian distribution was adaptively changed depending on the intensity at a given pixel in the projection image. The corrupted projection images were then filtered using the nonlinear anisotropic diffusion filter. The filtered projections as well as original noisy projections were reconstructed using filtered backprojection (FBP) with Ram-Lak filter and/or Hanning window. The ensemble variance was computed for each pixel on a slice. The nonlinear filtering of projection images improved the SNR substantially, on the order of fourfold, in these synthetic images. The comparison of intensity profiles across a cross-sectional slice indicated that the filtering did not result in any significant loss of image resolution.

Paper Details

Date Published: 3 July 2001
PDF: 7 pages
Proc. SPIE 4322, Medical Imaging 2001: Image Processing, (3 July 2001); doi: 10.1117/12.430964
Show Author Affiliations
Omer Demirkaya, King Faisal Specialist Hospital and Research Ctr. (Saudi Arabia)

Published in SPIE Proceedings Vol. 4322:
Medical Imaging 2001: Image Processing
Milan Sonka; Kenneth M. Hanson, Editor(s)

© SPIE. Terms of Use
Back to Top