Share Email Print
cover

Proceedings Paper

Proof of concept of a novel SMA cage actuator
Author(s): Christopher W. Deyer; Diann E. Brei
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Numerous industrial applications that currently utilize expensive solenoids or slow wax motors are good candidates for smart material actuation. Many of these applications require millimeter-scale displacement and low cost; thereby, eliminating piezoelectric technologies. Fortunately, there is a subset of these applications that can tolerate the slower response of shape memory alloys. This paper details a proof-of-concept study of a novel SMA cage actuator intended for proportional braking in commercial appliances. The chosen actuator architecture consists of a SMA wire cage enclosing a return spring. To develop an understanding of the influences of key design parameters on the actuator response time and displacement amplitude, a half-factorial 25 Design of Experiment (DOE) study was conducted utilizing eight differently configured prototypes. The DOE results guided the selection of the design parameters for the final proof-of-concept actuator. This actuator was built and experimentally characterized for stroke, proportional control and response time.

Paper Details

Date Published: 14 June 2001
PDF: 12 pages
Proc. SPIE 4332, Smart Structures and Materials 2001: Industrial and Commercial Applications of Smart Structures Technologies, (14 June 2001); doi: 10.1117/12.429661
Show Author Affiliations
Christopher W. Deyer, Continental Teves, Inc. (United States)
Diann E. Brei, Univ. of Michigan (United States)


Published in SPIE Proceedings Vol. 4332:
Smart Structures and Materials 2001: Industrial and Commercial Applications of Smart Structures Technologies
Anna-Maria Rivas McGowan, Editor(s)

© SPIE. Terms of Use
Back to Top