Share Email Print

Proceedings Paper

Vector Doppler: spatial sampling analysis and presentation techniques for real-time systems
Author(s): Lorenzo Capineri; Marco Scabia; Leonardo F. Masotti
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The aim of the vector Doppler (VD) technique is the quantitative reconstruction of a velocity field independently of the ultrasonic probe axis to flow angle. In particular vector Doppler is interesting for studying vascular pathologies related to complex blood flow conditions. Clinical applications require a real-time operating mode and the capability to perform Doppler measurements over a defined volume. The combination of these two characteristics produces a real-time vector velocity map. In previous works the authors investigated the theory of pulsed wave (PW) vector Doppler and developed an experimental system capable of producing off-line 3D vector velocity maps. Afterwards, for producing dynamic velocity vector maps, we realized a new 2D vector Doppler system based on a modified commercial echograph. The measurement and presentation of a vector velocity field requires a correct spatial sampling that must satisfy the Shannon criterion. In this work we tackled this problem, establishing a relationship between sampling steps and scanning system characteristics. Another problem posed by the vector Doppler technique is the data representation in real-time that should be easy to interpret for the physician. With this in mine we attempted a multimedia solution that uses both interpolated images and sound to represent the information of the measured vector velocity map. These presentation techniques were experimented for real-time scanning on flow phantoms and preliminary measurements in vivo on a human carotid artery.

Paper Details

Date Published: 30 May 2001
PDF: 15 pages
Proc. SPIE 4325, Medical Imaging 2001: Ultrasonic Imaging and Signal Processing, (30 May 2001); doi: 10.1117/12.428201
Show Author Affiliations
Lorenzo Capineri, Univ. of Florence (Italy)
Marco Scabia, Univ. of Florence (Italy)
Leonardo F. Masotti, Univ. of Florence (Italy)

Published in SPIE Proceedings Vol. 4325:
Medical Imaging 2001: Ultrasonic Imaging and Signal Processing
Michael F. Insana; K. Kirk Shung, Editor(s)

© SPIE. Terms of Use
Back to Top