Share Email Print
cover

Proceedings Paper

Lau phase interferometer for the measurement of the temperature and temperature profile of a gaseous flame
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

In this paper we have investigated the utility of Lau phase interferometer with white light source and circular gratings to measure temperature and temperature profile of an axisymmetric flame. In Lau phase interferometer the two gratings are separated by infinite distance. The third grating is placed at a distance Z equals n.p2(lambda) , (where n is an integer, d is the pitch of the grating and (lambda) is the wavelength of the white light source). The sensitivity of the system is determined by the pitch 'p' of the grating and the distance Z between the gratings. If the distance Z between the two gratings is increased to enhance the sensitivity, the accuracy of measurement is reduced because of the reduction in the fringe contrast. In white light Lau phase interferometer the fringe contrast can be improved by optimizing the self-image plane and the pitch of the grating. From the recorded interferogram the angle of deflection ((phi) ) is measured and temperature at a different point of the flame is calculated. The temperature measured using Lau phase interferometer is in good agreement with the temperature measured by thermocouple and dataloger. Details of the theoretical analysis and experimental results are presented.

Paper Details

Date Published: 8 May 2001
PDF: 6 pages
Proc. SPIE 4416, Optical Engineering for Sensing and Nanotechnology (ICOSN 2001), (8 May 2001); doi: 10.1117/12.427058
Show Author Affiliations
Chandra Shakher, Indian Institute of Technology/Delhi (India)
Madhuri Thakur, Indian Institute of Technology/Delhi (India)


Published in SPIE Proceedings Vol. 4416:
Optical Engineering for Sensing and Nanotechnology (ICOSN 2001)
Koichi Iwata, Editor(s)

© SPIE. Terms of Use
Back to Top