Share Email Print
cover

Proceedings Paper

Surface-micromachined 2D optical scanners with optically flat single-crystalline silicon micromirrors
Author(s): John GuoDung Su; Pamela Rae Patterson; Ming C. Wu
Format Member Price Non-Member Price
PDF $17.00 $21.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

We have developed a novel wafer-scale single-crystalline silicon micromirror bonding process to fabricate optically flat micromirrors on polysilicon surface-micromachined 2D scanners. The electrostatically actuated 2D scanner has a mirror area of 450 micrometers x 450 micrometers and an optical scan angle of +/- ±7.5 degree(s). Compared to micromirrors made with a standard polysilicon surface-micromachining process, the radius of curvature of the micromirror has been improved by 1 50 times from 1.8 cm to 265 cm, with surface roughness < 10 nm. Besides, single-crystalline honeycomb micromirrors derived from silicon on insulator (SOI) have been developed to reduce the mass of the bonded mirror.

Paper Details

Date Published: 18 May 2001
PDF: 8 pages
Proc. SPIE 4293, Silicon-based and Hybrid Optoelectronics III, (18 May 2001); doi: 10.1117/12.426942
Show Author Affiliations
John GuoDung Su, Univ. of California/Los Angeles (United States)
Pamela Rae Patterson, Univ. of California/Los Angeles (United States)
Ming C. Wu, Univ. of California/Los Angeles (United States)


Published in SPIE Proceedings Vol. 4293:
Silicon-based and Hybrid Optoelectronics III
David J. Robbins; John Alfred Trezza; Ghassan E. Jabbour, Editor(s)

© SPIE. Terms of Use
Back to Top