Share Email Print

Proceedings Paper

Photonic bandgap materials
Author(s): Terence J. Shepherd
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Materials that have periodic microstructure on a given length scale display a strong modification of electromagnetic density of states for radiation wavelength at the corresponding scale. These structures are known as photonic crystals. Under certain circumstances the density of states vanishes completely for a range of wavelengths, and the material is said to have a photonic band gap, whereby optical propagation is completely suppressed. This affords the possibility of optical control useful for a range of applications including novel filters, waveguides, and efficient laser structures. In this paper, a range of fabrication methods of these crystals is described, together with basic theory and some properties and applications. Particular attention is given to two-dimensionally periodic materials in the form of optical fibre (the photonic crystal fibre and photonic band gap fibre), which have the potential for high-power optical guidance. Three-dimensionally periodic materials designed to control microwave radiation are also described.

Paper Details

Date Published: 12 April 2001
PDF: 18 pages
Proc. SPIE 4347, Laser-Induced Damage in Optical Materials: 2000, (12 April 2001); doi: 10.1117/12.425031
Show Author Affiliations
Terence J. Shepherd, Defence Evaluation and Research Agency Malvern (United Kingdom)

Published in SPIE Proceedings Vol. 4347:
Laser-Induced Damage in Optical Materials: 2000
Gregory J. Exarhos; Arthur H. Guenther; Mark R. Kozlowski; Keith L. Lewis; M. J. Soileau, Editor(s)

© SPIE. Terms of Use
Back to Top