Share Email Print

Proceedings Paper

High-speed photographic study on overdriven detonation of high explosive
Author(s): Zhi-Yue Liu; Shiro Kubota; Shirou Nagano; Shigeru Itoh
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

On the common circumstances the detonation of explosives has a steady propagation rate and can be satisfactorily explained by Chapman-Jouguet's theory on this phenomenon. Hence, this type of detonation is more frequently called the Chapman- Jouguet (C-J) detonation. The detonation properties such as pressure, density, and temperature, of the detonation products are often characterized as the C-J values of the explosive that represent the corresponding maximums of the variables in the detonation products. However, when an explosive is initiated in some special ways, for instance, high velocity impact of a flyer plate, a strong detonation with properties higher than C-J values will be induced in the explosive. This strong detonation is what we called the overdriven detonation of explosive. The use of overdriven detonation expects to provide much more work to the surrounding matter than does the common C-J detonation. In order to have a basic knowledge of this detonation phenomenon, we designate an experimental set- up for the purpose of acquiring the overdriven detonation in high explosive. The set-up uses a circular metal plate accelerated by a piece of cylinder explosive (donor) to impact another cylinder explosive (acceptor), inducing a detonation wave in the acceptor explosive. The donor explosive used is PBX (85%wt HMX and 15%wt binder) explosive cylinder that has the detonation velocity of 7.84 km/s and the detonation pressure of 25.24 GPa and the acceptor explosive cylinder is SEP (65%wt PETN and 35%wt paraffin) with the detonation velocity of 6.97 km/s and the detonation pressure of 15.9 GPa. The impactor is the copper disc with the same diameter of the donor explosive and 1 mm and 2 mm thicknesses respectively. The detonations occurred in the acceptor explosive from the impact of copper flyer were recorded by the high-speed camera (IMACON 790). The photographs make us possible to estimate the detonation velocities from the distance and time data on them. In addition, we also make a numerical visualization on this phenomenon using a 2-D Lagrangian hydrodynamic code. The calculation, to somewhat extent, reproduces the consequences of the current experimental results.

Paper Details

Date Published: 17 April 2001
PDF: 8 pages
Proc. SPIE 4183, 24th International Congress on High-Speed Photography and Photonics, (17 April 2001); doi: 10.1117/12.424348
Show Author Affiliations
Zhi-Yue Liu, Kumamoto Univ. (Japan)
Shiro Kubota, Kyushu Univ. (Japan)
Shirou Nagano, Kumamoto Univ. (Japan)
Shigeru Itoh, Kumamoto Univ. (Japan)

Published in SPIE Proceedings Vol. 4183:
24th International Congress on High-Speed Photography and Photonics
Kazuyoshi Takayama; Tsutomo Saito; Harald Kleine; Eugene V. Timofeev, Editor(s)

© SPIE. Terms of Use
Back to Top