Share Email Print
cover

Proceedings Paper

Gas temperature layer visualization in hypersonic shock tunnel using electric discharge
Author(s): Gopalan Jagadeesh; K. Nagashetty; B. R. Srinivasa Rao; K. P. J. Reddy
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

A novel technique for visualizing the gas temperature layer around bodies flying at hypersonic speeds is presented. The high temperature zone is visualized by photographing the light emitted from the electric discharge generated over a model exposed to hypersonic flow in a shock tunnel. The technique is based on electrical discharge phenomena, where the frequency of radiation emitted by the discharge path passing through the flow field varies with the temperature of the gas medium in the discharge path. The experiments are carried out in the Indian Institute of Science (IISc), Bangalore, India, hypersonic shock tunnel HST-1 at a nominal Mach number of 5.75 using helium as the driver gas, with free stream velocity of 1.38 km/s and free stream molecular density of 2.3396 X 1016 molecules/cm3. The electric discharge is generated across a line electrode embedded in the model surface and a point electrode suspended in the free stream. A high voltage discharge device (1.6 kV and 1 A) along with a micro-controller based pulse delay control module is integrated with the shock tunnel for generating and controlling electric discharge which lasts for approximately 2 microseconds. The gas temperature layer at zero angle of incidence around a flat plate and slightly blunted (5 mm bluntness radius) 20 degree apex angle slender cone model are visualized in this study. The visualized thickness of the high temperature layer around the flat plate is approximately 2 mm, which agrees well with numerical simulation, carried out using 2-D Navier-Stokes equations.

Paper Details

Date Published: 17 April 2001
PDF: 8 pages
Proc. SPIE 4183, 24th International Congress on High-Speed Photography and Photonics, (17 April 2001); doi: 10.1117/12.424246
Show Author Affiliations
Gopalan Jagadeesh, Indian Institute of Science (Japan)
K. Nagashetty, Indian Institute of Science (India)
B. R. Srinivasa Rao, Indian Institute of Science (India)
K. P. J. Reddy, Indian Institute of Science (United States)


Published in SPIE Proceedings Vol. 4183:
24th International Congress on High-Speed Photography and Photonics
Kazuyoshi Takayama; Tsutomo Saito; Harald Kleine; Eugene V. Timofeev, Editor(s)

© SPIE. Terms of Use
Back to Top