Share Email Print
cover

Proceedings Paper

Ultrafast terahertz detector and mixer using a hot electron 2DEG device
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Hot electron bolometric (HEB) detectors and mixers for the THz frequency range, which use thin-film superconductors, have been developed recently. They have short response times due to efficient cooling of ht hot electrons by either (i) phonon transmission from the film to the substrate, or (ii) diffusion of the electrons into the contacts. We have previously demonstrated a 2DEG detector which uses the heated 2D electron gas medium, as well as phonon-cooling. Here we propose and analyze a new version of this detector which employs diffusion cooling. A response time of 1 ps and responsivity of 3,000 V/W are calculated for a device which is 0.8 (mu) l long. This response time is considerably shorter than for any of the superconducting HEB detectors. The predicted double sideband receiver noise temperature for the mixer version is in the range 1,000 K to 2,000 K at 1 THz, with a 100 GHz intermediate frequency bandwidth. The new detector could be operated at 77K and the local oscillator power is estimated to be about 1 (mu) W.

Paper Details

Date Published: 18 December 2000
PDF: 8 pages
Proc. SPIE 4111, Terahertz and Gigahertz Electronics and Photonics II, (18 December 2000); doi: 10.1117/12.422142
Show Author Affiliations
K. Sigfrid Yngvesson, Univ. of Massachusetts/Amherst (United States)


Published in SPIE Proceedings Vol. 4111:
Terahertz and Gigahertz Electronics and Photonics II
R. Jennifer Hwu; Ke Wu, Editor(s)

© SPIE. Terms of Use
Back to Top