Share Email Print

Proceedings Paper

Clutter-rejection technique for FLIR imagery using dynamic ROI extraction
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

A modular clutter-rejection technique that uses region-based principal component analysis (PCA) is proposed. A major problem in FLIR ATR is the poorly centered targets generated by the preprocessing stage. Our modular clutter-rejection system uses static as well as dynamic region of interest (ROI) extraction to overcome the problem of poorly centered targets. In static ROI extraction, the center of the representative ROI coincides with the center of the potential target image. In dynamic ROI extraction, a representative ROI is moved in several directions with respect to the center of the potential target image to extract a number of ROIs. Each module in the proposed system applies region-based PCA to generate the feature vectors, which are subsequently used to make a decision about the identity of the potential target. Region-based PCA uses topological features of the targets to reject false alarms. In this technique, a potential target is divided into several regions and a PCA is performed on each region to extract regional feature vectors. We propose using regional feature vectors of arbitrary shapes and dimensions that are optimized for the topology of a target in a particular region. These regional feature vectors are then used by a two-class classifier based on the learning vector quantization to decide whether a potential target is a false alarm or a real target. We also present experimental results using real-life data to evaluate and compare the performance of the clutter-rejection systems with static and dynamic ROI extraction.

Paper Details

Date Published: 4 April 2001
PDF: 10 pages
Proc. SPIE 4305, Applications of Artificial Neural Networks in Image Processing VI, (4 April 2001); doi: 10.1117/12.420925
Show Author Affiliations
Syed A. Rizvi, CUNY/College of Staten Island (United States)
Nasser M. Nasrabadi, Army Research Lab. (United States)

Published in SPIE Proceedings Vol. 4305:
Applications of Artificial Neural Networks in Image Processing VI
Nasser M. Nasrabadi; Aggelos K. Katsaggelos, Editor(s)

© SPIE. Terms of Use
Back to Top