Share Email Print
cover

Proceedings Paper

Computational simulation of the laser cutting process
Author(s): Markus S. Gross; Ian Black; W. H. Mueller
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

This paper describes the implementation and numerical evaluation of a transient three-dimensional computer simulation of the CO2 laser cutting process. Utilising Crank-Nicolsen-Finite-Difference equations for the solution of the Fourier heat transfer equation with Newtonian convection, the temperature distribution is predicted. For high accuracy the mesh is of non-equidistant nature, following a Weibull Distribution for the grid spacing. A parallel computation solver will be used, based on Aztec (a parallel iterative library for solving linear systems -www.sandia.gov), to calculate the nodal temperatures using a cluster of two HP J5000 workstations. Included in the solution is the behaviour of the material during phase change, whilst the open structure of the developed software allows incorporation of effects such as surface oxidation, radiation and limited convective flow. The main area of interest is the cutting capability with respect to varying material thickness (e.g. tailored blanks), cutting speed, power of the laser, laser mode, focal spot diameter and material properties, as well as the effect of these parameters on the quality of the cut. Further developments will also be outlined in this paper.

Paper Details

Date Published: 25 January 2001
PDF: 4 pages
Proc. SPIE 4184, XIII International Symposium on Gas Flow and Chemical Lasers and High-Power Laser Conference, (25 January 2001); doi: 10.1117/12.413987
Show Author Affiliations
Markus S. Gross, Heriot-Watt Univ. (United Kingdom)
Ian Black, Heriot-Watt Univ. (United Kingdom)
W. H. Mueller, Heriot-Watt Univ. (United Kingdom)


Published in SPIE Proceedings Vol. 4184:
XIII International Symposium on Gas Flow and Chemical Lasers and High-Power Laser Conference
Antonio Lapucci; Marco Ciofini, Editor(s)

© SPIE. Terms of Use
Back to Top