Share Email Print
cover

Proceedings Paper

Laser beam propagation through a jet aircraft engine's exhaust
Author(s): Vladmir S. Sirazetdinov; Anatoly D. Starikov; David H. Titterton
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

One-, half- and ten-micron wavelength radiation was used to study laser beam propagation through turbojet aircraft engine exhaust. A feature of the methods was that instantaneous distributions of the beam intensity were recorded during the experiment. Analysis of experimental data has shown that turbulent stream has a dramatic impact on spatial characteristics of a laser beam. For example, the averaged angle divergence for 30-mm one-micron beam becomes about ten times higher than its diffraction divergence. Results of different experiments showed that the average angle divergence of the narrow one-micron beam disturbed by the jet plume is several times less than that of the ten-micron beam which is characterized by a large diffraction divergence, and that of the half-micron beam stronger subjected to disturbances. Experiments in which the beam crossed the plume close to a nozzle at (phi) = 90 degree(s), 45 degree(s) and 10 degree(s) have shown that angular divergence increases with decreasing cross-angle, practically doubling the value when coming from the maximal angle of (phi) = 90 degree(s) to the minimal (phi) = 10 degree(s). Mathematical models have been derived, based on the experimental studies. The value of the structural characteristic in a turbulent stream is in the range of Cn2~10-9m-2/3.

Paper Details

Date Published: 31 January 2001
PDF: 10 pages
Proc. SPIE 4167, Atmospheric Propagation, Adaptive Systems, and Laser Radar Technology for Remote Sensing, (31 January 2001); doi: 10.1117/12.413815
Show Author Affiliations
Vladmir S. Sirazetdinov, Research Institute for Complex Testing of Optoelectronic Devices (Russia)
Anatoly D. Starikov, Research Institute for Complex Testing of Optoelectronic Devices (Russia)
David H. Titterton, Defence Evaluation and Research Agency Farnborough (United Kingdom)


Published in SPIE Proceedings Vol. 4167:
Atmospheric Propagation, Adaptive Systems, and Laser Radar Technology for Remote Sensing
John D. Gonglewski; Gary W. Kamerman; Anton Kohnle; Ulrich Schreiber; Christian Werner, Editor(s)

© SPIE. Terms of Use
Back to Top