Share Email Print
cover

Proceedings Paper

Effect of mask reduction ratio in alternating phase-shift masks
Author(s): In-Gyun Shin; Sung-Ho Lee; Yong-Hoon Kim; Seong-Woon Choi; Woo-Sung Han; Jung-Min Sohn; Tong-Kun Lim
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

In this paper we analyze the effect of mask reduction ratio in alternating phase shift masks. To properly predict image imbalance for different reduction ratios, a topography simulator was used. As the mask reduction ratio is increased, the aerial image imbalance is improved. As the reduction ratio is decreased, the amount of undercutting to compensate for the difference of image imbalance is increased. For undercut margins with lOOnm line/space patterns, 4X reduction has about ± 200 A of undercut margins, while 6X and 10X have about ± 300 A. The phase margin for 120 nm line/space patterns is about ± 1.5° regardless of reduction ratios. As the mask reduction ratio is varied, the optimum phase is shifted to keep the aerial image displacement constant through focus.

Paper Details

Date Published: 22 January 2001
PDF: 7 pages
Proc. SPIE 4186, 20th Annual BACUS Symposium on Photomask Technology, (22 January 2001); doi: 10.1117/12.410707
Show Author Affiliations
In-Gyun Shin, Samsung Electronics Co., Ltd. (South Korea)
Sung-Ho Lee, Samsung Electronics Co., Ltd. (South Korea)
Yong-Hoon Kim, Samsung Electronics Co., Ltd. (South Korea)
Seong-Woon Choi, Samsung Electronics Co., Ltd. (South Korea)
Woo-Sung Han, Samsung Electronics Co., Ltd. (South Korea)
Jung-Min Sohn, Samsung Electronics Co., Ltd. (South Korea)
Tong-Kun Lim, Korea Univ. (South Korea)


Published in SPIE Proceedings Vol. 4186:
20th Annual BACUS Symposium on Photomask Technology
Brian J. Grenon; Giang T. Dao, Editor(s)

© SPIE. Terms of Use
Back to Top