Share Email Print

Proceedings Paper

Development of quantum well infrared photodetectors in France
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Standard GaAs/AlGaAs QWIPs are now well established for LWIR detection. The main advantage of this technology is the duality with the technology of commercial GaAs devices. The second advantage widely claimed for QWIPs is the so-called band-gap engineering, allowing the custom design of the quantum structure to fulfill the requirements of specific applications such as multispectral detection. QWIPS are close to being optimized. The understanding of detection mechanisms has led to high performance QWIPs working at high temperature (above 77 K). However, as with all quantum detectors, the operating temperature of QWIPs is limited by the thermal current. A new skimmed architecture accommodating this offset has already been demonstrated. The optimization of a skimmed structure requires the modeling procedures and the process, to be adapted. We present the current status of QWIPs in France, including the latest performances achieved with both standard and skimmed architectures. We illustrate the development of our QWIPs by recent results on FPAs.

Paper Details

Date Published: 15 December 2000
PDF: 10 pages
Proc. SPIE 4130, Infrared Technology and Applications XXVI, (15 December 2000); doi: 10.1117/12.409887
Show Author Affiliations
Eric M. Costard, Thomson-CSF (France)
Philippe Francis Bois, Thomson-CSF (France)
Xavier Marcadet, Thomson-CSF (France)
Eric Herniou, Thomson-CSF (France)
Philippe M. Tribolet, SOFRADIR (France)
Michel Vuillermet, SOFRADIR (France)

Published in SPIE Proceedings Vol. 4130:
Infrared Technology and Applications XXVI
Bjorn F. Andresen; Gabor F. Fulop; Marija Strojnik, Editor(s)

© SPIE. Terms of Use
Back to Top