Share Email Print
cover

Proceedings Paper

Hierarchical wavelet-based image model for pattern analysis and synthesis
Author(s): Clayton D. Scott; Robert D. Nowak
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Despite their success in other areas of statistical signal processing, current wavelet-based image models are inadequate for modeling patterns in images, due to the presence of unknown transformations inherent in most pattern observations. In this paper we introduce a hierarchical wavelet-based framework for modeling patterns in digital images. This framework takes advantage of the efficient image representations afforded by wavelets, while accounting for unknown pattern transformations. Given a trained model, we can use this framework to synthesize pattern observations. If the model parameters are unknown, we can infer them from labeled training data using TEMPLAR, a novel template learning algorithm with linear complexity. TEMPLAR employs minimum description length complexity regularization to learn a template with a sparse representation in the wavelet domain. We illustrate template learning with examples, and discuss how TEMPLAR applies to pattern classification and denoising from multiple, unaligned observations.

Paper Details

Date Published: 4 December 2000
PDF: 9 pages
Proc. SPIE 4119, Wavelet Applications in Signal and Image Processing VIII, (4 December 2000); doi: 10.1117/12.408602
Show Author Affiliations
Clayton D. Scott, Rice Univ. (United States)
Robert D. Nowak, Rice Univ. (United States)


Published in SPIE Proceedings Vol. 4119:
Wavelet Applications in Signal and Image Processing VIII
Akram Aldroubi; Andrew F. Laine; Michael A. Unser, Editor(s)

© SPIE. Terms of Use
Back to Top