Share Email Print

Proceedings Paper

Interaction of pulsed CO and CO2 laser radiation with rocks
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Experiments on laser-rock-fluid interaction have been carried out by using pulsed CO and CO2 lasers which irradiated rocks typical for oil field: sandstone, limestone, shale and granite. Energy fluence and laser intensity on rock surface were up to 1.0 kJ/cm2 and 107W/cm2, respectively. The dependencies of specific energy consumption (i.e. energy per volume needed for rock excavation) on energy fluence, the number of pulses, saturated fluid, rock material and irradiation conditions have been obtained for various rock samples. The dependencies of momentum transferred to the rock on energy fluence for dry rocks and rocks with surface saturated by water or mineral oil have been measured. High-speed photography procedure has been used for analyzing laser plasma plume formation on a rock surface. Infrared spectra of reflectivity and absorption of rocks before and after irradiation have been measured.

Paper Details

Date Published: 16 August 2000
PDF: 12 pages
Proc. SPIE 4065, High-Power Laser Ablation III, (16 August 2000); doi: 10.1117/12.407382
Show Author Affiliations
Ramona M. Graves, Colorado School of Mines (United States)
Andrei A. Ionin, P.N. Lebedev Physical Institute (Russia)
Yurii M. Klimachev, P.N. Lebedev Physical Institute (Russia)
Anel F. Mukhammedgalieva, Moscow State Mining Univ. (Russia)
Darien G. O'Brien, Solutions Engineering (United States)
Dmitrii V. Sinitsyn, P.N. Lebedev Physical Institute (Russia)
Vladimir D. Zvorykin, P.N. Lebedev Physical Institute (Russia)

Published in SPIE Proceedings Vol. 4065:
High-Power Laser Ablation III
Claude R. Phipps, Editor(s)

© SPIE. Terms of Use
Back to Top