Share Email Print
cover

Proceedings Paper

Laser launching a 5-kg object into low Earth orbit
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Approximately ideal flight paths to low-Earth orbit (LEO) are illustrated for laser-driven flights using a 1-MW Earth-based laser, as well as sensitivity to variations from the optima. Different optima for ablation plasma exhaust velocity VE, specific ablation energy Q*, and related quantities such as momentum coupling coefficient Cm and the pulsed or CW laser intensity are found depending upon whether it is desired to maximize mass m delivered to LEO, maximize the ratio m/M of orbit to ground mass, or minimize cost in energy per gram delivered. A notional, cone-shaped flyer is illustrated to provide a substrate for the discussion and flight simulations. Our flyer design conceptually and physically separates functions of light collection, light concentration on the ablator, and steering. All flights begin from an elevated platform. Flight simulations use a detailed model of the atmosphere and appropriate drag coefficients for sub- and supersonic flight in the continuum and molecular flow regimes. A 6.2-kg payload is delivered to LEO from an initial altitude of 35 km with launch efficiencies approaching vacuum values of about 100 kJ/g.

Paper Details

Date Published: 16 August 2000
PDF: 9 pages
Proc. SPIE 4065, High-Power Laser Ablation III, (16 August 2000); doi: 10.1117/12.407373
Show Author Affiliations
Claude R. Phipps, Photonic Associates Inc. (United States)
James P. Reilly, Northeast Science and Technology, Inc. (United States)
Jonathan W. Campbell, NASA Marshall Space Flight Ctr. (United States)


Published in SPIE Proceedings Vol. 4065:
High-Power Laser Ablation III
Claude R. Phipps, Editor(s)

© SPIE. Terms of Use
Back to Top